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USE OF INDUCED SPATIAL INCOHERENCE FOR UNIFORM
ILLUMINATION OF LASER FUSION TARGETS

High gain laser fusion requires a very uniform ablation pressure at the pellet surface.1 2 For the
case of directly illuminated pellets, this in turn requires a high degree of uniformity in the incident
intensity. Even at k = 1 Mzm, where significant lateral smoothing can take place in the ablating
plasma, 3 4 illumination uniformities to within : 10% are likely to be required. At shorter wavelengths.
where the smaller absorption-ablation distance of the plasma provides only minimal lateral smoothing.4

illumination uniformities to within ± 1'Y% may be required.

Efforts to achieve uniform illumination have been frustrated by imperfections in the high poer
laser systems. The cumulative effect of small phase aberrations (both linear and nonlinear) introduced
by each optical element of a multistage laser produces large random intensity nonuniformitics at the
output, and these can only be partially controlled at great expense by using ultra high quality optics and
extensive beam relaying.5 In order to obtain the desired intensity and focal diameter with a lens of rea-
sonable focal length, one normally places the pellet in the quasi near field of the lens, rather than at

" best focus. With this configuration, however, the nonuniformities at the laser output tend to be
. mapped onto the pellet. Random nonuniformities may be statistically smoothed by overlapping many

independent beams at the pellet, but the large number of beam lines required to do this in a con'en-
tional way may be prohibitive.

In this letter, we report a simple and novel technique that allows a high degree of illumination
uniformity with modest quality laser beams. This technique induces a controlled amount of transverse
spatial incoherence in the output beam of a broadband laser, whose coherence time t, = ]/,A is short
in comparison to the pulsewidth t.. The spatial incoherence is achieved by imposing different optical
delays upon different transverse sections of the beam, and choosing the delay increments to be larger
than t, A wide aperture beam is thus broken up into a large number N of independent beamlets. At
the focus of a lens, these overlap to produce a complicated interference pattern modulated by a smooth

* envelope that characterizes the diffraction of an individual beamlet. On time scales long in comparison
to t,, the interference pattern averages out, leaving only the smooth diffraction profile. The pellet will
effectively ignore the rapidly shifting interference pattern if its hydrodynamic response time t,, satisfies
t, >> t,. The diffraction profile is relatively insensitive to amplitude and phase nonuniformitics in the
incident beam, in fact, the beam need only be approximately uniform over the small width of each

beamlet. We estimate that laser bandwidths as small as 0.2% should be adequate to implement this
scheme for laser fusion.

The concept described here bears some similarity to a technique recently proposed by Mima and
Kato,6 in which the beam is broken up by a random phase mask. In that proposal, however, the ran-

* dom phase relationship among the beamlets would remain fixed in time, i.e., the incident beam
becomes aberrated, but not really incoherent. The focal interference pattern therefore persists
throughout the pulse, and it invariably contains longer scalelength components that would be deleteri-
ous to the pellet implosion uniformity. Similar considerations apply to optical beam integrating d-eices
that are designed to produce a "top hat" spatial profile.7
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The induced incoherence concept is illustrated for one transverse dimension in Fig. I. The
incident laser beam amplitude is

EL(x.zZ) = A (x)F(t - z/c) exp [ - z/c) . (I)

where the complex amplitudes A (x) and F() describe the transverse nonuniformities and slow time
dependence, respectively. For a Q-switched pulse in a broad bandpass laser medium, F(t) can he

* approximated by a quasi-stationary stochastic variable satisfying Gaussian statistics. The correlation
function <F(t)F(t + r)> will exhibit a smooth localized r dependence of width t, = 27r/AW. so that
<F()F(t +,r)> --0 for 171 > t,., while the mean square amplitude <IF(t)I 2 > varies negligibly
within interval t, if t << t,,. (Here, the brackets denote an ensemble average.) This beam propagates
through the transparent echelon structure, which introduces time delays t, that increase with each step.
If the beam is nearly uniform over scalelength D, (i.e., if 18A/x ID << 1A I). then the output field is
approximately

e: E(x - nDj)AF0 - i,,) expfio(i,, - 0I], (2)
'1-I

where A,, A (nDj), and e(x) is a "top hat" function equal to unity for 1xI < D1/2 and /ero else-
where. Without loss of generality, one can normalize the amplitudes so that Y,, IA,, 12 - I. To produce
nearly complete transverse spatial incoherence within times of order t,, the delay increments i, - i,
must be larger than t, and out, must vary randomly (over at least 2ff) from step to step. The latter
requirement ensures that phase relationships among nearby beamlets will not be duplicated among
lower beamlets as the emerging wavefront shears its way down the echelon.

In the focal plane of the lens, the instantaneous intensity profile I(x,t) = IE,(x.,)1 2 of the over-
* lapping beamlets is

(xjt) - C sinc 1 J 0) exp (3)

where sinc (2rx/d) = sin 2(2vrx/d)/(2irx/d) 2 is the diffraction envelope of width d = 2k.1/D (/cro-

to-zero), C = D2/fX, A. - f/m D I, is the mth transverse mode wavelength, and

JM ) -= A,A*+, FO - t,,)F°(t- t,,+,,) exp [iw(t,,- 1f1+,P) (4)

is the mth transverse mode amplitude, assuming for simplicity that the maximum delay time difference
satisfies t, - it << t,,. The spatial profile of I(x) is generally a complicated random pattern, as
shown on the right hand side of Fig. I. If t,. > it. - il then the beamlets remain coherent (although
randomly phased), and this pattern will persist throughout the pulse. This corresponds to the case dis-
cussed in Ref. (6). If t, < t,+ - 1, however, the beamlets become effectively incoherent with respect
to one another, and the pattern averages out in times T >> I, The time-average intensity i(x,,.T)
over interval (, + T) thus approaches the ensemble average value

<l(x,0> - C<IF(0)12> sinc (27rx/d) (5)

when t,. << T << t,. This spatial profile, which is indicated by the smooth curve in Fig. I, contains
over 90% of the energy in its central lobe Jxj < d/2. As a numerical example, let A = I p m.
.f- 5 m, and D,- 5 mm.then d- 2 mm.

To estimate the residual random nonuniformities of i(xa,T), we examine the ensemble fluctua-
tions in the time-averaged mode amplitudes J.,IT) for m ;d 0. Since <J, ,.T)> = 8,,,.0 < IF(O)12 >,
the relative magnitude of the RMS energy fluctuations in all off-axis modes up to im - M < N - I is
given by the ratio

R . < IJ,.tr 2> / <Jo(tT)> (6a)

2
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= 1 J" I A .,,,I 2 , (6b)

where T >> t,., and

-2 _ <F(I)F4 (I+r)> dTSI F(t) 12>

In deriving expression (6b), we have assumed Gaussian statistics for F() and random phases for (of,,.
Expression (6b) reduces to j (t,./T) 12 when M - N - L however, for laser fusion, tile most
dangerous off-axis modes are those with long transverse wavelengths [%,,I > ,\t = d/2M where
M < N - 1, and Ag is comparable to the absorption-ablation distance in the ablating plasma. 1 3 It

M << N - 1, then the n summation in (6b) can be approximated by N(I/N2 ), and

RM - (Q,.IT)P/2 (dlNAM), 2 . (8)

The concepts introduced here can be extended to two transverse dimensions in any one of several
ways, such as the use of two perpendicular echelons, or a structure in which the steps consist of
squares, closely packed hexagonals, or concentric circles. If two perpendicular echelons are used, the
time delay increments on the second one should be as large as the total t, - it on the first. The aver-
age intensity at focus then becomes proportional to sinc (2rx/d) sinc (2ry/d) (which contains 82'V. of
the energy in the center lobes), while expression (8) becomes

.. : R m 0 ,1 ( /T )t/  ./ d /2N A w " (9 )

From expressions (8) and (9), we see that two factors contribute to the beam smoothing. The
d/NAg term arises because part of the energy has been channeled into (presumably) less dangerous

* modes at shorter transverse wavelengths. This is the smoothing me:hanism proposed in Ref. (6). For
a pellet of diameter d, a maximum allowable A.y of d/10, and N - 40 steps in each echelon, one
obtains d/NAg = 1/4. The (,./T) 1 2 term (which suppresses al/ off-axis modes) arises from the temn-
poral averaging, where T/t, represents the effective number of independent random intensity distribu-
tions contributing to the irradiance within interval T For t, - I psec and an averaging time T = 400
psec, this factor alone will effect a 20-fold reduction of RM.

The use of induced incoherence for beam smoothing was tested with a transparent echelon-lens
combination similar to the one shown in Fig. I. A laser beam of variable coherence time is produced
by an actively Q-switched Nd-glass oscillator. The oscillator bandwidth, which is monitored by a spec-
trograph, is adjusted by intracavity etalons, and by varying the gain to loss ratio in the cavity.
Pulsewidths are typically 30 nsec. The beam from the oscillator is expanded to a 20 mm diameter and
transmitted through the echelon, which consists of overlapped I mm thick glass slides cemented
together to minimize losses. This echelon breaks the beam into -1 mm wide beamlets with a 1.7 psec
delay increment between adjacent beamlets. The beamlets then pass through a slit perpendicular to the
echelon steps to achieve a one-dimensional geometry, and are focused onto a Vidicon camera by a I
meter focal length lens. The vidicon measures the focal profile averaged over the laser pulsewidth.

Figure 2 shows the effect of the echelon on the focal distribution with a narrow band IleNe laser
in place of the glass oscillator. The echelon broadens the focus due to diffraction, and produces a com-
plicated pattern due to interference among the coherent beamlets.

Figure 3 shows the focal distributions with the echelon and the variable bandwidth glass oscillator.
When the laser is adjusted for a narrow bandwidth, one obtains a complicated interference pattern, as
with the HeNe laser. At the intermediate bandwidth shown, the coherence time 1, - I/A, = 4.6 pscc
is longer than the delay between nearby beamlets, but shorter than that of the widely spaced beamlets.
Here the shorter scalelength interference pattern produced by the widely spaced beamlets (that intersect

4
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Fig. 2 - Far-field focal profiles obtained using a HeNe laser with and without the echelon. The vidicon camera employed for

the measurements has a 25 /tm spatial resolution.

a.

o*



LASER SPECTRUM FOCAL PROFILE

2 nm 1 mm
Fig. 3 - Far-field focal profiles obtained with the echelon as the bandwidth of the glass oscillator is varied.
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at larger angles) is smoothed, while the longer scalelength pattern produced by adjacent beamlets per-
sists. Finally, when t, becomes short enough (-1.6 psec for the case shown) the interference anmong
adjacent beamlets averages out, and one obtains the smooth focal distribution shown.

We have also tested the ability of the induced ii;icoherence technique to smooth out nonunifor-
mity in the incident laser beam. Figure 4(a) shows the illumination obtained in the quasi-near field
(2.5 cm closer to the lens than best focus) when a large amplitude nonuniformity was impressed on the
incident laser beam without the echelon. In Fig. 4(b), where the echelon has been inserted in the
beam, the nonuniformity is eliminated. The temporal incoherence of the laser was the same in both
cases. The echelon was found to provide a significant smoothing effect over a distaneL :A: (from best
focus) given by Az = d10, where 0 is the convergence angle of the outermost beamlets.

The induced incoherence smoothing technique is applicable to high power glass laser systems. In
measurements of gain vs. wavelength, we found the gain coefficient for phosphate glass (Q-98). to be
within 97% of the peak value over the 0.2% bandwidth used in these experiments. Thus, with a modest
increase in the gain, a high power system could accommodate the bandwidths used in the above expert-
ments. Other lasers, such as KrF, with similar bandwidth capabilities should also be applicable to the
technique.

The smallest laser bandwidth that can be used will be determined by the required number of
beamlets N 2 and the pulsewidth t.. The delay increment of the echelon ( t,,+i - ,, > t,) limits the rise-
time at focus to > N2 ,; hence, for N 2 - 1000 and t, - I psec, the total de!ay across the beam would
be > I nsec. Since fusion reactor pellets will involve pulsewidths > 10 nsec, this should not be at seri-
ous restriction. Aside from this consideration, a lower bound on At, may be determined by the onset of
plasma instabilities produced in the interference intensity maxima. At high irradiances, this may
require that t, be less than the instability growth time.

In this paper, we have demonstrated both theoretically and experimentally the use of programmed
spatial incoherence to achieve a smooth illumination profile on flat targets. This technique has a

marked advantage over other techniques involving a coherent laser, such as the random phase plate or
the Spawr integrator, in that (1) virtually unlimited degrees of uniformity can be achieved, and (2) the
focal spot irradiance is uniform even on short spatial scalelengths. The second feature may be impor-
tant for avoiding instabilities in laser plasma interactions, such as small scale self-focusing and stimu-
lated Brillouin scattering. For the fusion application, one needs uniform illumination of a spherical sur-
face. Earlier studies have shown that if the incident laser profiles are smooth, one can achieve uniform
illumination of a spherical surface by overlapping a relatively small (> 20) number of beams."' The
problem prior to the availability of this technique has been in achieving a smooth and reproducible focal
profile in a single beam.

The smoothing technique appears highly promising for the fusion application. It should also be
applicable to other processes, such as shock wave generation, which require uniform illumination by a
concentrated laser beam.

We gratefully acknowledge the valuable discussions and suggestions by Dr. S. E. Bodner, and the
technical assistance of M. Fink, J. Kosakowski, H. Hellfeld and N. Nocerino. This work was supported
jointly by the Office of Naval Research and the U.S. Department of Energy.
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(a)
MODULATED BEAM
NO ECHELON

(b)

MODULATED BEAM
WITH ECHELON

--- 1 mm
Fig. 4 - Quasi-near field focal profiles obtained without (a) and with (b) the echelon. In both cases the laser beam

at the lens had the game structured profile.
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